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By”R. Fuchs and L.

All aerodynamical

designing and ana3ysis

●✎ tion of uniform steady

Introduction.

calculations,

of airplane~,

t METHOD.

Hopf ●

which form tb.ebasis of the

are founded upon an a6sump- =-

rotion. There are, however, many prob- —

lems of practical importance which cannot be disposed of by ._ _

meabs of such calculations. To these belong all questions re-

lating to maneuverability and to the mzxim.m stresses undergone -.—

during flight. Such aroblems have hitherto been solved by apply-.

ing established scientific principles relating to steady flight,
.

as conformably to the facts as possible and, w-herethis method

Was not practicable, by relying in individual cases, on the

opinion of the pilot. If, however, aerodynamics is to afford a

~:iderbasis for the art of flying, it must elucidate the prob- __—

lems of accelerated and disturbed motion, phenomena in an acci-
.

dental or intentional disturbance tkmough the deflection of the .4

rudder or elevator, or any other change in the conditions of .—

flight. .
● ,

* From Technische E?erichte,Volume 111, No. 7, pp. 317-330.,1
—

+ .



Gur experimental knowledge is sufficiently extensive to af-
---

forfi,in many instances, tiienecessary basis for the mathematical

analysis of’‘~hesephenomena and, w-hereswc’his not the case, the

theoretical investigation of the problem can indicate the neces-

sary experiments on models and actual fzight.

The treatment of the whole problem WELy,at first, appe=

hopeless to the theorist. The problem is that of ELbody with

six degrees of freedom mcving in a fluid (ai~) and on ~hich

forces are acting, whose relation to the position of the body

only known empirically- Bryanls great ~ervice is the circum-
4

ventiOn of these difficulties by the method of small oacilla-

..

is

tions and the opening of a way for the treatment of these prob-

lems, even though the method iS ~estricted to simple conditions.
—

The method of small oscillations iS only applicable to condi-

tions in the neighborhood of a known state of equilibrium and,

as applied to the present instance, is as follows:

An airplane is in steady flight along a given line. The .

quantities which determine its position and conditions of flight

(namely,velocity, angle of attack, slope of the flight path, —

angle of bank, rate of side-sligpir.gand curvature of flight
--.,

path) are all interdependent, when the engine generates a defi-

nite propeller thrust and the rud&ers have a definite position.

The values of the above quantities are deter~,inedby the condi-

* tions of equilibrium in steady flight, which

satisfactorily discussed. lf one or more of
,*

●

have never been

~~~se variables
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have not the value required by the conditions of equilibrium, .—

then the oscillation cannot be steady. It is simply assumed

t-hatnone of these variables differs greatly from the value cor-

responding to equilibrium in steady flight.

All terms

turbances, are

ment6 and only

of the equations of r.otion,which are due to dis-

then expanded in powers of tinesmall displace-

the first term of each series is retained.

The equations in this form are linear and easily solved. No

further fundamental difficulties present t?nemselvesand onlY the _

mathematical work (which is sometimes very hard), has to be per-
4

formed.

All previous calculations refer to small departures f~om

rectilinear flight, for which there are two independent groups,

each consisting of three equations of motion- Longitudinal and
—

lateral oscillations take place, in this case, independently of

one another. Chan~es in speed, in the slope of the flight-path

and in the angle of attack produce no lateral or unsymmetrical.
—

motion oscillations. Banking, side-slipping and yawing, so long

as they are small, have no effect on the symmetrical oscillations

which are determined by the three akove-mentioned variables.

On the contrary, it is impossible to separate still furthe~ the

lateral oscillations and tree.trotations around the longitudinal

axis X, (rolling), separately from rotation around the vertical

R axis Z, (yawing).

In practically all contributions mhich deal with the problem
.s

*
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thus simplified, only the question of stability in rectilinear

flight is raised. The actual coaxse of a disturbance is not
w

fol?.ouedout, but only the question is raised as tc whether an

airplane will finally return to equili-oziumfrom the disturbed ....===

condition due to the mall variables introthzced,or m-netherit

has a tendency to divezge furtb.erfrom it. In the former case,

the flight condition is termed stable, in the latter, unstable.

The importance of and the effect due to aeroeynamical quantities,

as determined by the desi~ Gf the airplane, are brought out by .

this procedure, but, on the contrary, it is not clear as to vihat

: significance is given the te& sta~il~ty and vrhatqualities the

airplane Will exhibit in the hands of the ptlot. Neither can ——

it be mainained that the aero~y~~i~ theo~y of sta-~ilityhas

borne fruit in practice, except possibly i,it England, where it

has been supplemented by systematic tests on models- S0 long as

the stability of only one flight

above-mentioned questions remain

not understand ‘nowstability ard

condition is examined, all the ——

undecided. Above ail, we do

maneuverability are mutually

related and whether an airplane can be handled as well when con-

structed with a high degree of stability, and how an airplane re- ._

acts to an accidental disturbance.

Reissner* first recoamized the need of investi~~ting wore ,-_

deeply inijcthe actual facts and of going beyond the question Of _

mere possession of stability to describe the actual cmrse of ther

disturbed motion. Reissner and his pupil Gehlen** were the fizst
*Zeitschrift ftirF%uztechnik und Motorluftschiffahrt, 1910,

Nos. 9 and 10.
...

**l~Dissertation,!)~u-~lisk.edb:~pu-Olderibourg,Munich, 1913. “
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to work out the problem for lateral oscillations. Gehlen not on- —

lY Solves the equation of stability when longitudinal and lateral ~

oscillations are mutually independent, but also determines the

integration constants, from arbitra~y initial values of a dis-

turbance or of a movement of a rudder, and gives a complete de- —

‘scriptionof the phenomena involved, namely: the angle of bank,

the radius of the turn, and the drift of the airplane.

This analysis, which represents,the l~tmostthat can ‘Deat-

tained by the method of small oscillations, still has the defect

that it is restricted to small deviations from rectilinear flight.

. In curve-flight the problem is not one of small deviations-ohly.

The problems cannot be solved without taking into account, at ~

the same time, the longitudinal oscillations, which are separated

from the lateral oscillations in the method used for small oscil-

lations. For tnstance, the question today depends on whether an

airplane is ascending or descending in a turn. For finite oscil-— .
- Iations. which maydiffer to anY extent f~om rectilinear flight,

even riowthe problem c=ot be attacked, since not even the gen-

eral case of steady motion which includes both rectiline~,ra~

curving flight, has yet been solved.

The question of longitudinal oscillation is different, since

there are, of course, steady longitudinal,oscillations with any

desired velocity, angle of atj~ck em slope of flight path, wi~n- -— .—

out lateral oscillations. Such a steady forward motion presents
.

many points of technical importance, some of which we will touch

upon. There is, for instance, the question of static stability,+s

*
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on which something has already been published in the Technische— —.

Berichte.* lt does not.follow, from static considerations, as

to what magnitude of static stability should be chosen for an
.-

airplane, according to its purpose, and even analysis by the

method of smal1 oscillations furnishes no conclusion on tinis

point. It is known that airplanes which are ordinarily unstable,

may nevertheless fly well under special circumstances. It is

alsO known that even with a stable airplane, conditions may arise

out of which the airplane can only be rescued with difficulty.

The best known example i.s “stalling,n in which the airplane no
.

longe~ obeys the elevator. Although the result is usually an

~sy~etrical oscillation, it is generally begun by ‘lstalling’~

. (that is, a symmetrical condition of flight into which enter .-

hitherto unexplained relations). Plnenomenahave also been Ob-

served in diving, which may give rise to dangez. The problems

Of stressing are purely problems of longitudinal oscillation,

SinCe airplanes have hitherto only been tested under symmetricalL

loads. He have to determine what centrifugal forces appear in

flattening out after a dive, or what lif’~coefficients and ve-

locities combine, in passing from high speed at small angles of

attack to low speed at large angles of attack.

There are, as yet, no analytical methods for longitudinal

Oscillations as valuable as those of Gehlen for lateral oscilla-

.
* Technische Berichte, Volume 1, No. 1, p.16, and following;
Volume 1, No.4, p.108 and following; Volune 11, IJo.1, p.33; VOl-
ume II, No.3, p.463 and following. .

+*

.
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these calculations, based oh the

the range of which is difficult +m

perceive, end which lead to most complicated calculations, we

have adopted another method which is not restricted to small 06- .—

Cillaiions. This was encouraged partly by the results of a num-

ker of purely practical numerical compiitations(according to . .—

~~hich,approved airplane~ appear b have al~ost neutxal equilib-

rium) and partly by Lanchesterls I’Theoryof Phugoids,l*wtlich .—

includes general longi~di~~ oscillations differing widely from

steady fli@t.

Lift is considered as the only air force in the phugoid theo-
. ry. Drag is neglected, thus eliminating all dissipative forces,

and the principle of energy supplies a simple solution of the I

equations of motion. The angle of at-tackis further assumed to

be invariable during the Fholerpeviod of oscillation. In this

.~ay, all empirical relations are excluded and the whole motion -

may be analytically presented. Yhe sigriificanceof these simpli-

fications vill be gone into in a subs~uent section. HOwever ._

bold they may seem, the result nevertheless agrees with motions ._

actually observed in flight. “Looping the loop” was recognized _=

in the phugoid theory long before Pegoud. Paper darts, such as _

childxen play with, and gliding models, t:~o~ into the air, de.

scribe rations which a~ee exactly with those required by the _

phugoid theory. Actual airplanes, when left to themselves, do

not, however, fly in phugoids and the suppositions of the phugoid ~.

+*

.

lheory nust, therefore, fail entirely in the domain of full-size
* Papers by Bryan and his pupils, which are difficult to obtain,
appear, however, to deal nith this subject.
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controllable aircraft.

It has been ~inted out by VO~ ‘&rKan a@ Trefftz* that’the

phugoid oscillation gives a solution for the or~inary @.uations.-— .—

Of longitudinal oscil~tio~s when the static stability is infinite.

An airplane then resists ~ery c~=ge tn its angle of ~ttack and .-—.

the ‘Nst t,il~rtant a~~rnption of the p~ug~id t~eo~y is Eat isfietl.

The POssibility of controlling the airpl.ai~edisappears carpletelY,----—

Since transition from one condition of fli~t to anot”neris inCOn-

Ceivable, wi’~out cha~ing the angle of attac’k. Since ?m airpl=e

can be built which will
.

is not suitable for the

fails to solve the most

describe a phugoid, the pkugoid th~rY

elucidation of all tt~eserelations. It

important problem of all, namely, ~bat of

controllability. Numerical calculations, in fact, 1ead to the

anticipated rewit that the equilibrium of serviceable ai~phle~

is not infinitely stable, but, on the contrary, iS very small.

(positive or negative) and that airplanes, in the first approxi-

mation, are n~~tral (Technische Eerickte, Volume II, No. 3, p.463)~

As will be shown later, neutral equilibrium greatly simpli-

fies the equations of oscillation. IR the simplest case, indeed,

it is riotthe angle of attack that remains unaltered, but the .-—

angle between the longitudinal axis of the airplane and the hori-

zontal. The other

closed.e-xpression,

equations can be easily solved, but not in a —

as in the phugcid theozy, since the forces only

. denend empirically on the now variable angle of attack. The solu-
-’
* fiberLangsstabilitet und Langsschvingungen von &Flugzeugen~;

11 I

( Longitudinal stability and longitudinal oscil~ations of airplanes),
*- Jahrbuch der ??iseensbhafti.ichen Gesellschaft fur Luftfahrt, Volwme

111, 1914-15, p.116.
d
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tion, however, exlhibitsone very definite characteristic, namely,

the oscillation which it represents has two distinct pheses with
.

respect to time, in that the forces at rig-ntangles to the flig-nt-

path first reach equilibrium and then (much more .slo~ly),the ‘

fosces in the direction of flight.

Our further considerations are based on this fact. The re-

sult is used suggestively, in an attempt to.firklan approximate

solution of the non-neu!xtalairplane having the above--described

character stic. It is assumed that the velocitiychanges more .

S~OWly than the other terms dete~mfning the conditions of flight.-.

The method has in every case pro-redapplicable. IT leads to a

step-by-step inte~ation of the equations of oscillation from the

original condition, but the steps are so long that razely more .

than two are required and, within the range of each step, the in-

dividual quantities are obtained in closes form, as solutions Of

linear differential equations.

3y this method, it is easy

part (the initial stage) of the

to represent the most impoxtant

course of an oscillation without

being limited.

trol surface,

mtion of the

to fixed conditions. A variable

slow application of the controls

controls can, in this way, be as

angle of the con-

or a back and foztl.

easily expressed

as any accidental external disturbances, gusts, etc. In the first

part, the method mill be worked out and the for~~as @ven, fiile,

in the following parts, definite problems will be treated.
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I- Svmbols Used in Oscillation Equations.

An le form- with ho~~zontal by tangent to flight-path
7Fig. 1);

Angle between upper wing and horizontal (Fig. 1).
.-

Angle of attack, ~ngjlebetween chord of upper wing and
tangent to flight-path;

-.

Angle betveen prcpeller a~s and flight-path
hence a - q = iv;

Angle of incidence b~t~eea upper wi~~gand propeller axis,
X=9-CL (Fig. 1);

Total weight ’ofairplane in kilograms;

Propeller thrust in kilograms;

Area of supporting surface in nf~

Resultantspeeflof ai~plane in meters per second, con-
sidered positive in the directioh of flight;

Specific weight of the air in kilograms per m3 ;

Acceleration due to gravity = 9.81 meters per seconds

Dynamic pressure = ~ x g x V2;

CL and CD coefficients of lift and drag;

L = q S CL (lift); D = q S CD (drag);

H= Moment of forces of airplane about its center of gravity,
measured in such a way ‘tat a moment is positive when it ‘
turns the nose of the airplane downward. The positive
direction of the turning moment is, therefore, OppOsi-te
to that of the angles e,a,x.
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Forces in the Direction of Fli~ht.- In the direction of flight

there act: a component of the propeller thrust, T COSQ, a comm-

nent of the force of gravity, -W sin% ; and the air resilience,

-CD q s. We therefore obtain

1’:dv =T COS~ -w Si~%- (1).— *CD*SV2 “.
g dt

Forces at Right Angles to the Direction of Flight-- There ~.ct _

at right angles to the direction of fli@t: ~ co-nent ‘f ‘he .:

propeller thrust, T sinq; a component of the force of gravi@~ ..__

-w cos~ ; and the lift, CL q s. TO this mst be added> in curve- _.

flight, the centrifugal fozce
Xxv? in which r
gr’

is the radius

of curvature of the flight-path. To determine T, we have —

(Fig. 2) the equation

Vdt =d’X/
r

The centrifugal force acts in the direction of gravity, ~h~n .-

d ~ is positive. If the direction of gravity is considered neg-.-

ative, the centrifugal force is written

8 ‘dt

Since there are no components of

flight-path, we obtain

velocity at right angles to the ._

_Ty
0

~ d’)’.—+~~inC+3- Wcos%++ -;CL s v= (11)-=
~ dt

Koments.- If k is the radius of gyration of the airplane.—_ ___—

about its center of gravity, the positive direction of the moment
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belng opposite to that of increasing Q, we have
●

❞ f&=_~
!3 - dt2

In finding the value of the moment, it nas borr.ein mind

d~
that M ciepemdsupon V,a and the angnlar velo~itY ~ .

The resultant moment M, is principally made up* of the moments

of the wings, together with that of the horizor.taistabilize

and elevator. Assuming as usual, tlcatthe moment is proportional—

to the square of the velocity and iS a Iinwnz function of a,

4
3= (~ +mla) V2

and ~ V2 = #$ the so-called static stabiiity. ~ is deter-

mined by the position of the elevator at the time. This, in

turn, fixes the angle of attack at which the moments are in equi- -—

librium. It cannot, of course, be assumed that ml is the same

for all conditions of flight. If, howe~er, the equations are

taken for successive intervals of time, within which the angle ..__

of attack does not vary too much, it may then be safely assumed

that n 1 is constant for the duration of such an interval. An

interval can, in any case, last only so long as the position of

the elevator does not vary, that is, so long as ~

same value.

When f3itself varies with the time, the nmment

has the

is a func-

d6tion of this variation, ~ = k. To obtain the differential
. 11

* Zur Berechnung der Langsmomente von Flugzeugen (Calculation of
the longitudinal mments of airplanes), Technische Berichte, ‘
Volume II, No.3, pp.463-483.*



coefficient of this relation“: tne damping, it “fistbe remar.bered “-—

that any vaviaiion of e affects a as well as V. The effect

on V maY be neglected, since it is very sm.sll,and even the

alteration of a need only ‘be introduced in the calculation for

the moment of the horizontal stabilizer and elevator. An estimate

indicates that the damping factors, which allow for the variation —.
of v, only amount to -&j and the damping effect of the wings

-1
to only ~, the damping of the horizontal tail plane beicg .

taken as 1. If, therefore, % is the moment of the horizontal

tailplane and elevatir, ii is only necessary, in the expression

for M, to add

Q@j= ~~a~
de da de

.-

daIn order to be able to express the ratio ~, let rH indi-
.

cate the distance of the middle of the horizontal tail SUrfaces

from the center of gravity. By a rotation d9, around the axis,

the horizontal tail mrfaces are lowered by rH d9 . If the air-

plane siwltaneously advances a distance of dxj the angle of

attack increases by A a, so that —

~nAa = —
dx T

—
—

The cosine of the small angle which the horizontal tailplane

ma-keswith the propeller axis, is here taken as unity. With the

small size of the angle in question, the tangent may be replaced

by the arc and we then obtain

1

.

da-- = %
59 v
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The equation of moments thus takes the form

( 111)

in which

while f is a constant determined by the position of the ele-

vator at the tir,e.

In equaticns (I) and (11) we put % = O -.a; further be-
a

cause of the small angles: ~~sa = COSq= 1; sins = ~ and

si.nQ= &; all angles being u~ea-wredir~degrees. On putting ‘—

.~
dt = T, the diffezentia.1equations becom

--
—

(Is)

da=y -*[*(U 57.3 ~
- iw’l+ 57.3.g cos@ + g sin~a]– ~— ~ CL~-

dt *

(IIa)

da–y
dt

(IVa)

A few additional remarks may here be made on the analyti-

cal expression for the propeller thmst. If we assume* that

the thrust decreases as the square of the velocity (which is _
* An exact basis for this law is unfortur~tely ~a~kings as Yet? . ..

. The attempts by ‘Xamn(TcclraischeBcrichte, Volume I, No.6, PPC
232–241) would he?e be too elaborate. The present assumption
agrees approximately \7itlithe expression derived by Everiing
(Zeitschrift ftirI’lugtechnikund Mbtorluftschiffahrt, 1$?16,p.127,%
equation (8).

-.

.
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only approximate) or, in other words, that the thrust is repre- .-

sented (within the range discussed) by the parabola ——

T To -PV2= (2) —

(in which, of course, To is not exactly the thrust when stand-

ing.still)then p is still a function of the density of the air.

We will, however, assume that the altitude of tineairplane &0e8

nOt change materially within the limits of one of the time in-

tervals,considered, and that the density of the air therefore

remains approximately constant. In equation (IIa), T may be

considered constant, because ~ (a - iw)V is significant in .-

57”3 A C S V and also becausecomparison with
2F~

thrust plays no part in this equation. In order

tion (2) to equation (Is), we then write

and consider p’ combined with C!n, that is,

the engine going, the coefficient of drag is

the propeller
..._

to adapt equa-

vhen flying with

correspondingly iq-

creased. T can then be considered invariable in the differen-

tial equations, Moreover, an increase in CD must also be made

for steep gliding flight, T;henthe p~opelle~ is runhing light.

11. Airplane nith Heutral Eq-ailibri~. —

Vhen static stability is zero ad the riomentdoes not change

-.
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ln order that the airplane may be in equilibrium and %hat

the moments set tzpby the wings aridthe tail hay balance, it -is

necessa~ for the position of the elevators to be chosen so that

f o.= The airplane is then ~in neutral equilib~ium and equation- ,

(IVa) becomes
t

(YJ.= -~d Vdt

dt -d’YV, also Y=~e (1)

Assuming that when t = G, Y= ~ = O, it follows tlnat

C! o,= that is, Y = O. In this case, therefore, the an~e

which.the upper wing makes with the horizontal remains unaltered.

Eqmtions (IIIa) and (IVa) are now eliminated and the vari-

ations of V and a are

my.
dt g sin @o+ *

‘m .-57.3 P COS 60 5:.3 J-
dt v -—@cLv? (3)

The terms. #$(a - iw) + g sin
1,

omitted in equation (3), since they

with 57.3 g cos @O. This can al”ways

approach f90°.

From equations (2) and (3), V

g a of equation (IIa) are .— .

are very small in comparison

be done when 60 does not .-

and a must now be calculat- .

ed as functions of t. it is convenient, in many cases, to plot

simultaneous values of a and V as coordinates; The following .,_.

rule is impertant for the discussion of the resui.ting V,a curve. .—
t FOZ each eO, there is, in the V,a plane, a cur~e, along mhich
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there is equilibrium of the forces in the direction of flight.

This curve is obtatn~ by putti.~g ~ . 0 in e~uation (2) and

then expressing V as a function of a. For each (&, there is

also a curve, along which there is equilibrium of the forces at

right angles to the direction of flight. This curve is dezived

from equation (3) by ~tting & = O. ‘Thereis complete equilib- ‘

rium of the forces at the point of intersection of these tWO

curves. Figs. 3 to 5 show these mrves for three different

of eo> so that there is equilibrium when a = 3° in Fig.

a= lo” in Fig. 4, and a= 15° in Fig. 5. we have taken

w= 1,530 ‘~; S = 41-3 m2; T s 485 - 0Mf)5X ~ x
. ;XSV2;

values

3,

.
A ho
—=0.81; $x —=~.

5

ha ~~
The values for CL and CD are taken

from the polar diagram of the Dfw C V. The two equilibrium

curves intersect in the V,a plane in a se~nd point, in addition

to the point for which they are calculated. In the later inves-

tigations of the so-called ‘stalledilcondition, the importance

iS shown of the qyestion as to whether this second intersection

is at a greater or a smallez angle of attack

must, therefore, compute immediately at what

curves of equilibrium just touch each other.

dVequations, obtained by putting ~ = O and

(2) and”(3), in the following form

-v= S(eo>a), v =x(eo,

we obtain, for the desired point of contact,

than,stalling. We

value of 60 the two

If we write the

— = O“ in equationsFt

a),
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(4]

From the second of these equations we obtain, for each a, the

corresponding 60 of complete equilibrium. We fu~ther find

(%

and, consequently,

against a for all

_Qmrx!Q+!E_g:=o
dOC ~ da da

(ii&
da = c). If, therefore, 60 is plotted

positions of equilibrium,this ourve must have

,

a maximm value for the point of @ntact.

From equation (4) it follows that

d
t
%). 1. (6)

~a CL1

The numerical factor 57.3 must not be forgotten, w-hen a is ex-

pressed in degrees.

III. Analytical Calculation of Neutral Equilibrium in Flight.

rn Figs. 3 In 5, using the data for the airplane Dfw C V,
-...

in addition to the curves of equilibrium for several solutions

of differential equations, simultaneous values of V and a

are plotted by means of a numerical integration. From all these.—..=
curves, it will be seen that (for a point V,a at some distance

dafrom the curve ~ = O of the equilibrium of forces at right

angles to the direction of flight) the corresponding inte~~ .
.

curve always runs almost parallel to the a axis, so that varia-

..
tions in a correspond to much smaller variations of V. h
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other words, the forces at right angles to the direction of flight

attain a state of equilibrium much more rapidly than”those in the .

direction of fli@t. The

pear on the right side of

Only when we approach the

order of magnitude of $&

reason is that much smaller values ap- ._

equation 2 (II)”tha~ of equation 3 (111).

curve of equilibrium S“ = o, does the

.Accordingly,in the analytical

in the velocity and in the angle of

Ub

become the same.

calculation of the variations.

attack, each step will be di- -

vialedinto separate intervals of time.

Case A.- Let us Suppose that the equilibrium of an airplane

ks been disturbed, so that, at the beginning of

flight thus initiated, the velocity V. and the

0/0 determine a point far removed from the V,CL

The return toward neutral equilibrium.must first

the unsteady

angle of attack -.—
da

curve == 0“

of all be exam-_.—

ined, as to the time w~en the forces at right angles to the line

Of flight are approximately in equilibrium. As a first approxi-.-.-
~tion> We put V = Vo and then determine, from equation 3 (II)

(1)

In carrying out this integration, only the time intervals

will be considered, during which CL may be regarded as a lin-

ear function o“f a . This is possible with CL thz’ougha wide .

range, unless we come quite near the maximum lift. In the neigh-

borhood of this maximiirnvalue the

time intervals of the integration
I

smaller.

rang~ becomes

mst be taken

smaller and the

corresporidingly
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If we put for CL in equation (1)

CL = ~Lo + ~Lia

and further, for shortness

E 57.3 ;s=
2 >

equation (1) then takes the form

(2)

[3)

The solution of this equation, which ks the value ———

5s

of

for t“:=o, is

a= L+

when

L =

In order to make a

(a. - L)e-c CL~VOi

57s3 Costfo &—
~CLl V02 CL]

second approximation for V,

(4)

.-

this value

put for a, together with V = Vo, o-nthe right-hand side

equation 2 (II).

dV ~’ -gsin60+
~cO~eoa_ ~’cDV:

Z=w 57-3 57.3
(5)

and takes, for simplicity in the time interval under Considers-- --~

tion, as a linear function of

(6)~ = CDO + CDi
.

A less simple expression offers no difficultyz but ‘kes.

,theresult less concise,.without affecting it materially. This _=

t gives
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+ g Coseo( cc~~~“’) (a. - L)e
-CCL~Vot

57.3 – .
(7)

Viefind, by integration, the following solution which has

the value v = Vo for t = 0:

V=v- ‘P+ Nt+Pe-
~ CL~ Vot

o
when

——

lj=lEL ~ ~Dj voh .,,L -
c c~o V02

‘I-7 g sin 60’+ ( ‘5~OjEQ -if 57.3 57.3 “
s

Example: In the above numerical example, s = 41.3 r12;

Y= 1530 kg; T = “485- 0,05 x + x $ s Va,
.

.. . ....—

To the values of ~ in the polar diagram (Dfw C V), there must —

be added, in accordance with the rule for T, the amount 0.05

and Z1so the coefficient of structural drag O.0336. we may then, “.

according to the dimensions of the model, put

CLo = 0s325, CL~ = 0.0672; CDO = 0.115, cD~ =.0.90562 .—

For e = 7°, there is equilibrium when a = 3°.0

Tieobtain:

10300a.—-
(4.gG + ae –

-(3.0s43 Vot
103~0 + 4.84)e (9)

V02 VO



v= TTo.-( 3.13\ (a0.00146 VO - —~o/O - 103:0 + 4.84’)+
To ,

i760+(().27 + ~ - o*05124,?~)t i-
0

( )(3.13. a+ CI.0G146VO - — 10300 + 4.~4) e -0.0643 Vot

V. ff-v2
o

(10)

These expressions will be discussed later in a numerioal

example.

Case B.- If the point determined by V. and co in the

V, a Pme is very close to the V,a (~~ = C)) curve at the co!n- ~“-

mencement of the ~tion, we then fi~, in contrast to Case A, that

the variation of V is of the s~e order as that of a and we

must consider the two equations together

al=
dt

da—=
dt

~

V/ - g sin 60+ ~~=3 cos 60 a-

* (CDO + CDla) V’=% (’I,a), “ (11)

57.3 2 Cosec _
v

(12]C (CLo + CL~a) v = s(V,a) __ ~

If a mlution commences C1Ose to the equilibrium curve
da
=“”’ as assumed here, simultaneous values of V, a will remain

close to it throughout. To make this clear, we will consider the

solution again in time intervals, within which % (V,a) and

$ 6(V,a) may be regarded es linear (which is obviously always pos-.: -~

sible) and we will suppose the final values V,a of any time in-

* terval, to be the initial values V.,aO of the succeeding inter-
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val. g~p~e~ show that, in practice, only one or two time inte~-

vals are required.

For a eingle time interval, we have

g =WTo,ao) + y)l( v.-Vo) -i-qJa - Q-

da = S(vo,%) + pa(~ - Vo) + q2(a - ‘O)”
z

At the beginning of the first interval,
a)Sue> o

almost O and we ha’~e

n &) =- c cL~ ~o.=.. 2
0

Equations (ha) and (12.3)are solved by Putting

Y1t T2t
a=aC+L+c3e +Cze ,

rt
V = VO + B+dZ@ ? +d. e~t

(ha)

(12a)

—.-

.-

.—

(13) _-

=1 and Ta are the roots of the equation

r2 - r(P1+q2)+P1q -P2q, =~2

* The factors 01, d=, d,, dz fOlIOW from

(16]



Equation (16) has real negative roots, so long as the init~al..—.-
velocity does not fall to stalling speed. In the former example,

when Vo, ZO lies close to “% (Vo,ao) = O, we have

r2 + !5.68X

and the Tcots

22a4~/~~=

1.64 COS6010-2V01-
-4

V. r + 1.3!5x lo vo2 +
.

—

.—

of v, a

rium for

together,

1.93 x 102 COS2 60
+ = o,

V02

become complex, only when VO falls below

The oscillations

equilibrium of forces

be surveyed in detail

from the instant we approach the line of

normal to the direction of flight, can now

If me,again consider simultaneous values

then the V, a curve can only reach .theline of equilib-
.-

the perpendialar forces, when V and a rise or fall

since, at the instant of crossing the line of equilib-
da

—

.riu~ m= o> the curve runs in the direction of the V-axis.
-=

Should a, for instance, rise and V fall, then ~ rould first

be positive, then zero and then again positive, that is & must

have a minirmm value and, at the same time, bemme zero at the

instant when the line of equilibrium is reached. The expressions

zero together, when rl and r2 have different

er’t Cannot

values. If,
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therefore, a increases md V decreases, or u decreases ~11~. _

V increases, then the V, a curve will certainly remain pema– .—

nently close to ~ne line of equilibrium; but will only reach it

after a very long time (theoretically t = =). Wen a and

V increase or decrease simultaneously, the line of equilib~iurn

will be crossed once and thereafter the V,a curve will again

reme.inin close proximity to the line of equilibrium..

The rition can,be

If v= 1530 kg,

CL =
CD =

then equilibrium

per second.

0.325

o*115

unde~stood bettez from a numerical example.

s = 41,3 rnz,

+ 0.0672cL,

i-0.00562a

exists when a = 3°, 60 = 7°

Let the equilibrium be so disturbed t“nat,

of the ur.steadyflight, co = 5°, V. = 43.2 m

and V = 36.2 m

at the,beginning

per second (Fig...&

are values which give points lying .farfrom the line of equilibr-

ium of the normal forces. In the first part of the oscillation,

the .%lution the~efors corres~nds to Case A:

a’= 0.67 + 4.33e
-2.35%

(19)

v= 43.2 - l.llt + 0.0407e-
2. 35+

(20)

The calculated values of V arid a have been plotted in

Fig. 6 as functior.sof each other and in Fig. 7, singly, as

functions of t. The result is, wor=ever, compared with a very

careful numerical integration (dash lines) and the excellent

d agreement between the curves shows that the analytical calcula–
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tion is very exact.

The equilibrium curve is reached in 1.12 seconds, when

IT= 42 n per second and a = 1°. Now take case B and the values

become

a= 2.65 - 1.77e
-0.1s2(%3” 1~)+

(21)

+ 0.12e
-2*27(t-1-lZ)

u= 36.05 + 5.95e
-0. lsz(t-1” 12)

(22)

Equations (21) and (22) can be used for the whole course up

to t==, since, for t = ~, they give a = 2.6!5° and

v= 36.05 M per secoti, which, thezefore, come very close to the

coordinate values ~ = 3° and V = 36.2 n per second. In ortier —.

tO estimate the time it ac~ally takes ~“ resto~e equilibrium, it

KUst be borne in mind that the term containing e
-2. 27(+1” 12)

3

(which from the first is vani~hingly small in equation (22) and .——

therefore can be entirely omitted) diminishes rapidlY* The term
~ ~5e-o.152(t-1= 12). ~hasthe value 0.1 after 28 seconds. It may,

therefore, be said that, with the @ven disturbance, equilibrium

is practically reached in about half a minUte

IV. The General Case. Discussion of the Constants. Analytical
‘Treatment. .-

The general equations for the velocity V, the angle of

attack ‘a, the angle of inclination of the upper wing to the her- .=

izontal e, and the angular velocity ym~ar~
d
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d~—= TJz_ gsine+~cos 6a-— CD V2,
dt W . 5;.3

c = 57.5 ; s, (Is)
2

&l=T

[
-l&(a-

dt
iw) + 57.3 g COS6 +

—

v w
..

+g~in~a]-cCLv, ( IIa)

d@ ~—= (IIIa)
dt

d~‘=( f-ma) V’-d YV.dt
(IVa)

Among

are always

(Permanent

conditions

time interval (temporary constants).

the coefficients appearing ‘inthese eguations, some ._

invariable even under different flight conditions .

constants), w“nileothers vary under different flight

and can only be regarded as constant within a given ._—.

To the former class beldng: ..

1. Total weight of airplane, neglecting variation in weight .

due, for instance.,to consumption of fuel;

2. Supporting surface;

3. Angle between upper wing and propeller axis;

4. Acceleration due to gravity, g;
g#g

5. Damping coefficient, d = @ z V2
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The temporary constants are:

1. Propeller thrust anflair density.

For the propeller thrust, the expression

was introduced. T, h and P’ are constant within a given time in-

terval, but al?.three quantities my vary in different time inter-

vals.

i ~F
2. The static stability m = ~——

Wk V2 da
is regarded as con-

stant within a given time interval, but it is possible b use dif- _

ferent values for m in different time intervals, ~~henpassing

from one state of flight to another.

3. As slready sta-ted, f varies with the position of the

elevator. If, for instance, at the beginning of +&e oscillation,

the moments of the wings ~fi of the tail balance at an angle of

attack of 3° and the elevato~ is then tuned so they balance at ._

go,

for

ear

we will have f = 3 m for the first

the second.

4. The coefficients CL and CD are

functions of a: CT =C~A + C$4 a,

interval and f= 9 m

here introduced as lin- _

%=%DO+CDIU” 1* ..=

assumed to be constant

~~ith.inany given time interval. These coefficients will, of –.. .-

course, vary in the different time intervals, if a increases or

decreases.
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If me now undertake the solution of the general equations by

rnme~i.calprocesses with given values of the permane~ltand tempo-

rary’constants, starting from a definite instant, t,= 0, with
.

arbitrary initial values of Vo, uo, 6., ?’.””./$$llalways be found>

that at first the velocity only changes slowly, in

with the angles. This fact offers a very easy way

treatment, by assuming in the first approximation,

comparison

for analytical

as in the case

of neutral equilibrium, that V = V. constant. Equation (Ia)

drops out and we have only

(IVa), in which V is put

however, all linear, when

which is a great advantage

to solve equations (ITa), (IIIa), and .—

equal to Vo. These equations are,

CL and CD are linear functions of a>

in working out the problem. Moreover,

these three equations are reducible to two, provided a certain ..-

correction is introduced for diving= The values found for

v0, a, e, y, are then put into equation (Is) and we obtain, by

simple integration, a seoond approximation for V, which, *m-

gether with the previous

excellent solution for a

expressions, as shown by

fixed coefficients, give

an interval of about two

values for a,tl and T, presents an

definite time interval. These analytical

comparison with solutions by means of

the actual path of flight very well for

seconds. If it is desired-to follow,

during an extended period, until equilibrium is reac-ned,the non-

steady flight caused by any disturbance cm a stable airplane, by

the same methods as for a neutral airplane, the above calculation

*
can be used in conjunction with the method of sman oscillations.

—.
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During the first seconds, we calculate by the above method and

thereby determine the course of

pleted its large variations and

equilibrium value, we calculate

librium, by the method of small

v,

has

the

a, ~, 7. When a has corl-

&ubstantially reached its

further course, up to equi-

oscillations, making use of all

four equations and proceeding from the final values of the present

method. i%ch an example is worked out in No. VII.

V, Problems of the General Case.

1. Let an airplane be in equilibrium, with all permanent and

temporary constants kno~, and let the equilibrium be disturbed

by some cause, such as a gust, so that the velocity is changed to_ ,

v0> the.angle of.attack to ~, the inclination with the hori-

zontal to 6., and the angular velocity to YC. What is the

course of the non-steady motion now set up? More especially, how

does a stable airplane return to equilibrium?

~. Let an airplane be in equilibrium and a deflection be im-

partecito the elevator. The values in the state of equilibrium __

v, a, ~,1 = O are to be taken as initial values. In the differ-

ential equations, honever, a value of f is to be put, correspond-.—

ingnith the neu position of the elevatur. Again a non-steady

tion sets in, which has to be followed. It rmst be especially

vestigated, as to how this deflection of the elevator affectS

stable (mSO),

( By the method of

possible to give

mo-

in-

neutral (m = O) and unstable (m < 0) airplanes.—

subdivision into time intervals, it is always

successively different elevator settings, At the
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momefitof setting the elevator, we must start from the initial

values of v, a, 8, Y, but, on the other hand, we mst introduce,

into the differential equations, the particular value of f which

corresponds ta the new elevator setting. —

3. Let an airplane be in flight under engine power. At e>g~ve~..

moment, the engine is shut off and a new setting is simultaneously

given the elevetor- The values for V, cc,9 ~.ndY, ~UT~%m engin5-_

driven flight, stand as initial values. The differential equa-

tions must, however, be those of gliding flight; that is, T = O,-------.-—

and in the expression CD = CDO + CDl,a, for the corresponding

~ Position> P’> defined by

in its place, an amount put,

propeller revolving slowly.

from gliding flight to power

T .U
2g

S Vzp’ must be omitted and*

which corresponds to the drag of the .-

The reverse takes place when wssing

flight.

4. The stalled condition cen VSrY ~~ei~be tr~ate~ b~rt~Le

present methd, since, precisely in this condition, the velocity

changes very slowly. All the phenomena peculiar to stalling can,

therefore, be represented by the general formulas given below, bY

putting the initial values characteristic of this condition (large

angle of attack ati low speed) in the differential equations for

such v~ueS of CL = CLo + CL~a, CD = CDo + CDla as Correspond ‘0

the a pOsition.

5- This method also suffices admirably for the txeatment of

diving flight, since the velocity in this case has been found to

change but slowly with variations in the coefficients, variation

●
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of 5 due to change of the elevator,pdsition aridvariation of

T’ in passing from engine-driven flight to gliding flight, - ,=
,

In all these cases, we have to deal with tinefollowing

mathematical problem. A system of four differential equations

is given, with definite values,of the permanent and temporary

constants. Solutions for the four variables a~e sought as func-

tions of the time with initial values of Vo, ao, 8., ye,. for

t=

the

the

the

o. If these solutions are to hold for a fairly long period,

same problems must be solved for consecutive time intervals,

final values of V, a, @, Y, of the one time interval being

initial values of the next. The general analytical method ---T—

of working Qut

examples. The

reserved.

these problems is given below and explained by

actial solution of the above special problems is .

VI. Application of the Analytical Process to the —.
General Problem. —

In all non-steady flights, the velocity V varies but slow-

ly in comparison with the angles a and e- In solving eqUatiO-~S._,——

(Is), (IIa), (IIIa), and (IVa), it is, therefore, assumed, in the

first approximation, that V = V. is constant. We then have -

to deal with the following equations: .-.

da 5?*3 E cos e _ C(CLo + CL1 a)vo +y .z= V. (23)

~ ‘-y.—=
dt (24)

~.(f-ma)V02 -dVo’Y
dt (25) .

in which
~=5; .3 *S (26)
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Equation (Is) comes first into consideration in seeking a second _.

approximation for V. At first, the terms

-K(a-iw)w + g sin 6a are again neglected in comparison with

57.3 g cos 6.. If, for instance, T = 485 kg, W = 1530 kg, and

e = 20° then

-X!Z(a_
w ‘w) + g sin 6a = 0.24a + 3.11 iw;

57.3 gc0s6a = 530a;

and this neglect is, therefore, justified. When 9 approaches

-90° in diving flight, then these neglected terms again come into

consideration. The correction, which then becomes necessary,

will be discussed later.

It further appears that, except in diving with large oscilla-

tions of e, 57.3 cose can be replaced by 57’.3cos $., in

which 60 is the initial value of 6, since (with the variations

in f3considered here) 5’7.3Cos e only changes by a small per-

centage, which (as ~m~rison with numerous exact calculations .

always reaffims) does not materially affect the result. We have,

therefore, only two equations to deal with:

da– 57.3—- E Cos @o
dt V* - ~ c~o V. - cC,LlV. G+y

from which 9 is at once given by

%’y

(27)

(28)

(29)
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The solution of equations (27) and (28) is obtained by the

values
a= L +plerlt +~e

rzt

Y =B+qler~t+q2e r2t

On putting

N= m+CdCT~ (30)

we find

I!=N:02”[5703gcoseo - a~vo21+; (31)

c c Vnf
B“=. ~o- [57.3 g COS do - c CLo Voa] + “IN (32)

The values of p,, ~, ql, qz, rl, rz, are determined by

pr=- ~ CL1 Vo Pa + qz;22

yo-B=nl+na; q,r, =-m Vo2p3-d Voq3;

qzr~ = - m V02 ~ - dVo’q2-

l?etherefore obtain for r, and rz the quadratic equation _

r2+r Vo(d+c CLl)+ NVo2 =0, (33)

from which we”obtain

?;=- % ‘o ‘ VOGJ

r2=- ~ ‘o - Vo-
(34) -

when
. (35)

Hence
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.

a

‘-Y

L +
~-RaVot

[-
a, cos v-.

~-R2Vot
+ cos “d==+

‘2 -~ ‘in ‘0’-1 ‘

6 e.- Cl + B, + e-R=l’Ot [Un= Jcos Vot -m - R12 +

+,,*
‘in“d=g )

%=e-a=@o-O, -L+Bt+

-R2vot-,-
,e

[s, Cos vot]~- + ~+

‘in ‘o’/==]
We have, at the same time,

(36)
—

(3?)

(38)

(39)

(40)

(41)

(42)

.

(32= ~[mvo R.(ao -L) +(m-c CL1 R]) (YO-B)I ~ .— —

5D”= - ~[Vod(ao-L)+~o-.B] J
.

Rz (T. -B)] “C CL1 [Vo(m + d Ry) (aos~=— -L)-
N Vo

(43)

—



These formulas remain unchanged, when m - R12 < 0, except–

ing that-it is necessary to rep-iace m - R32 by .%2 .- m and.........

the trigonometrical functions my the corresponding hyperbolic
— —

functions. ..

In the case N = 0, which is not specially notable in its

characteristics, the formulas break down. If, in suck an in-

stance, we take

K= “; d [57.3 g Cos (30 f-~c~ovo2g+— (44)
2 R2V02 2 R2’ .——.

To -~cIJvo%+A=
~CLI K-f ,.——._

2 Rz V. 2R.# ‘

they then become

-2 R2Vota=aO+KVOt+A(l–e ), (45)

v=
-.2R2Vo’t

T9 + ~ @ K Vozt -Ad Vo (l-e )A

e = 00 + (Y. -.4d Vo)t + * c CLI K V02 tz +

Ad’i(l _ e–2R2vot),-i—— (47) -
2Fi2

.

%.= E’o- ao+(7’0-Ad Vo-KVo) t+

(48)

A second approximation for V is obtained from

[
V= Vo+Jtdt ~-

g 60 Cos 60
g sin 60 + .57.3

—
@

(49)
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in which the values

For judging the

found above for a and 13“mustbe in&erted.

course of flight, the angle % , between —

the tangent to the path and the horizontal, is of special impor- ,..-..—

tance. If we wish to know how the course of flight is influ-

enced by the setting of the elevator, we must consider d%
~f >

that is, the variation of % with respect to f, the variables

which fix the elevator setting. For this me find

~= CLIC

[

-R~vot
df N

-2R2+NVot+e

(
2 Rz

Cos ‘o’ F + ‘;-

sin’.’m~’

—

(50)

or, when N = O,

~=$-’&l+2R2V2 t’
-2.~votl

2 0 -2RaVot-e
2

VII. Examples,

Taking the same data as above, S = 41.3 m’, % = 1530 kg, - .—

T = 485, ~ = 0.81 (at an altitude of 2000 m),
o

+~=J_
15.2’ CLO = 0.325, ~Lj = 0.0672; Cm = 0.115, ——-- ,.

% 1 = 0.00562;

the figures correspond approximately tO the Dfm C V. Let —
.

m= + 0.00191. (This value was found in calculating the moments .—

for the Dfw C V, though with the negative sign) and let

d= 0.0238 (also the same as for the Dfw C V).



1A. The state
.

~=30
‘%=70

inc~eases to 43.1

38

of equilibrium (~g = 36.2 m per second.,

and. Tg =0) is SG distmbed that %H-e,velocity.
0

m per seco-ndand the angle Of attack to ~09 - _

The non-steady motion, which now sets in, is examined and it is

thus determined in.what ‘wayt~heai~pk-ne retwms to eq-ai I ib~ ~um.

in the general formulas, we must put

V. = 43.1, a. = 6.9, S0 = &g= 7, Y. = Tg= O-

~ince ~ne ~oments arc assume-dto be in equilibrium

0,00575

a = 2.97 -i-

+-

-1. s=~
6.1.5e cos(lQ1.2t + 36.7}C>

-i.GBt o3.24% + 4.8e. cos(lG1.2t - 27.4) ,

.-~. Gs’t
+ 0.314e

7.8)0

second-s,-n-eobtain

CL=
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e = 9.3’7+2.4(t - 2) - 0.485e-
1.e(&2)

cos(96.5t - 234.2)0,

v= 41.1 - 1.03(t - Zf - o.205(t - 2)2 -

1.6(& 2]
- 0.0239e- cos(96,5t - 172.5)=

The numerical values given by these formulas have been

plotted in Fig. 8, that is, from t = O to t = 2, by the first “

group of formulas and from t = 2 to t“= 4, by the second group-

The continuous lines have been calculated from the formu~s “.

while the dotted lines are those obta-incd

tion. The agreement is excellent.

In Fig. 9 the same curves (dash) are

by numerical integra-. -_

.-

shown once.more from

t =Otot= 2; while the course from t = 2 to t = 13 (also “

d=sh) has been calculated by the method of small oscillations, ,
.

in the neighborhood of the position of equilibriums with initial

values corresponding to t = 2. For comparison, the result of _

the numerical integration is also shown (bY continuous lines)- ‘ _

2. Let

per second,

an elevator

the airplane be in equilibriuW- Then Vg =,36.2 m

~ = 3°, 6g = 7°, Tg = O. Let it be given SUCh _

setting that the moments are in “equilibriumonly at

a= 9°. The non-gteady motion set up in this way is to be fol–

lowed. We again insert m = + 0.00191 and obtain:
.

V. =36.2> ~=3;60=7~ yo=oj

\ f- m 9 = O, f = 0.0172.
.

—
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. -40-

We find:

l.41+.’-
CL= 6.58 - 4.93e- cos(85.3t - 43.4)0,

0 = 5.87 + 7t - 3.82e
-lb41t

sin(85.3t - 17.3)0,

v= 36.2 + 0.42t - 0.6t2 - 0.286e-
1.4It

sin(85.3t - 0.6)0 . .

The results of this calculation, from t = O to t = 2, are

plotted in Fig. 10.

Translated by
National Advisory Committee
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